
 Roland Parviainen

 An Examination of the Scalability
 of

 Multicast Interactive Applications

1999:037

MASTER'S THESIS

Civilingenjörsprogrammet

Institutionen för Systemteknik
Avdelningen för Programvaruteknik

1999:037 • ISSN: 1402-1617 • ISRN: LTU-EX--99/037--SE

An examination of the scalability of multicast
interactive applications

Roland Parviainen
Centre for Distance-spanning Technology

Department of Computer Science,
Luleå University of Technology,

971 87 Luleå, Sweden

Roland.Parviainen@cdt.luth.se

January 25, 1999

Abstract

This Master Thesis discusses some issues of scalability in interactive applications
that uses multicast. Two prototype applications made by the author that highlights
some problems of scalability are also described.

The first application, mIR, multicast Interactive Radio, is a system for distributing
high quality audio that provides interactive services to the listeners. The other appli-
cation is m3DE, multicast 3D Environment, a distributed multiuser 3D environment,
where users can interact with each other.

Conclusions about the applications are that mIR is scalable if the problem of relia-
bility is solved by redundancy and not a reliable multicast protocol. For m3DE, it is the
application itself, especially the memory requirements that are the restricting factor for
scalability.

Preface

This report describes my master of science thesis, which was done during the summer
and fall of 1998 at the Software engineering department of the Centre for Distance-
spanning Technology.

Part of this work was done within Esprit project 28410 Roxy, which is supported
by the Information technology part of the 4:th Framework Program of the European
Union. Support was also provided by the Centre for Distance-spanning Technology
(CDT), and the Swedish National Board for Industrial and Technical Development(NUTEK).

I would like to thank my supervisor Dick Schefström. I would also like to thank
the rest of the staff of CDT for commenting on the work, especially Peter Parnes, who
also had the original ideas about mIR.

Luleå, December 1998
Roland Parviainen

i

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Technical background .. 2

1.2.1 IP multicast . 2
1.2.2 Real-time Transport Protocol 2
1.2.3 MPEG-1 Audio . 3
1.2.4 Java 3D . 3

1.3 Scalability. 4
1.4 Application Level Framing . 4
1.5 The applications . 5

2 mIR – multicast Interactive Radio 6
2.1 Introduction 6
2.2 The transmitter 6

2.2.1 The voting protocol . 8
2.2.2 Filenames . 8
2.2.3 Transmission of songs. 8
2.2.4 Votes . 9
2.2.5 Reliability of votes . .. 10
2.2.6 Reliability of the audio transmission 11

2.3 The receiver 12
2.3.1 Receiving packets . .. 12
2.3.2 Performance . 13

2.4 The voting tool . 13
2.4.1 Available songs. 13
2.4.2 Information about songs 13
2.4.3 Discussion . 15

2.5 Scalability. 15
2.5.1 The transmitter. 15
2.5.2 The voting tool and the receiver 16
2.5.3 Bandwidth . 16
2.5.4 Measurements . 17

2.6 Conclusion . 18
2.7 Future work . 18

ii

3 The multicast 3D environment 20
3.1 m3DE . 20

3.1.1 The avatars . 21
3.1.2 Views . 24
3.1.3 VRML objects . 24
3.1.4 Actions . 24
3.1.5 The ghost client. 24

3.2 Scalability. 24
3.2.1 The application . 24
3.2.2 Bandwidth . 25

3.3 Conclusions . 25
3.4 Future work . 25

3.4.1 Scalability . .. 25
3.4.2 The application . 26

4 Conclusions 27

Appendix A: Glossary 28

Bibliography 29

iii

Chapter 1

Introduction

Some define interactive applications as “A term describing a program whose input and
output are interleaved, like a conversation, allowing the user’s input to depend on earlier
output from the same run.”1, i.e. the user interacts only with the program itself. All
applications that have a user interface can be called interactive with this rather broad
definition. In the applications studied in this thesis the word interactive is used to
describe applications where the user can interact with other users, i.e. the interactivity
is not between the user and the application, but between the different users.

All applications described in this thesis have been developed in the platform inde-
pendent programming language Java [8]. The m3DE application was developed com-
pletely from scratch, and the mIR applications where based on Peter Parnes2 initial
implementation of mIR. This implementation did not have any interactivity, the only
supported bit rate was 128 kbit/s and it did not follow the RTP [13][12][7] specifica-
tions completely.

1.1 Goals

The main goal of this thesis was to develop two prototypes of interactive applications
and to examine some scalability issues of these applications.

The first application is mIR – multicast Interactive Radio. The goal was to make
scalable implementations of as much of the initial ideas for mIR as possible3.

The main ideas were: the server part of mIR would multicast MPEG audio files on
different channels depending on the music type. The client part would act as a tuner
where the user can choose which type of music she/he wants to listen by selecting the
channel. The tuner would also allow the user to vote for the next song to be played.

For the second application, the multicast 3D environment, the goal was to develop a
virtual 3D world that users can interact in. IP multicast should be used as the underlying
information transport protocol.

1Foldoc,<URL:http://wombat.doc.ic.ac.uk/foldoc/>
2
<URL:http://www.cdt.luth.se/˜peppar/>

3
<URL:http://www.cdt.luth.se/˜peppar/progs/mIR/ideas.html>

1

1.2 Technical background

1.2.1 IP multicast

IP multicast [2] provides efficient many-to-many data distribution in an internet envi-
ronment. Senders send datagrams to a “host group”, a set of zero or more host identi-
fied by a single IP destination address. The datagrams is delivered to all members of
the host group by the network infrastructure in an optimized way. Neither receivers
nor senders need to know who or where the other receivers and/or senders are. The
membership of a host group is dynamic; hosts may join and leave groups at any time.

1.2.2 Real-time Transport Protocol

The Real-time Transport Protocol, RTP [13], is a standard protocol for transmitting
real-time data such as audio and video. It was explicitly designed for multicast in
mind, and is typically run on top of UDP [11]. However, RTP may be used with other
underlying network or transport protocols. RTP provides no additional reliability and
assumes that low levels of loss are acceptable for audio and video applications.

The data transport is augmented by a control protocol, the RTP Control Protocol
(RTCP), which consists of session messages sent periodically to the same destination
as the data.

RTP Packet

The RTP data packet header contains the following among other things:

� A sequence number, that can be used to discover packet loss and out of order
packets.

� A synchronization source (SSRC) which identifies the source.

� A timestamp.

� A payload type field identifying the format of the RTP payload.

� A marker bit. The interpretation of the marker bit is defined by a profile. For
audio transmission, the marker bit is usually used for signaling the start of a
talk-spurt.

RTCP

RTCP is based on periodic transmission of control packets to all participants in the
session, using the same distribution mechanism as the data packets. RTCP packets can
contain, among other things, any of the following:

� Source description items (SDES) to identify the participant (name, email, etc)
and associate the information with the SSRC in the RTP packets.

� Sender reports for transmission and reception statistics from participants that are
active senders.

� Receiver reports for reception statistics from participants that are not active senders.

2

Sync

ID Layer

Bit rate Frequency Pad.
bit

Priv.
bit

Mode Copy Home Emphasis

Audio data

0 1 2 3 4 5 6 7

bit
Prot.

extension
Mode

Figure 1.1: The MPEG Audio header

1.2.3 MPEG-1 Audio

MPEG is a working group in a subcommittee of ISO/IEC (the International Standards
Organization/International Electrotechnical Commission) that generates generic stan-
dards for digital video and audio compression.

MPEG works in phases. These phases are denoted by MPEG-1, MPEG-2, MPEG-
4 and MPEG-7. Both in MPEG-1 and in MPEG-2, three different audio levels are
defined. The layers are denoted by roman figures, i.e. Layer I, Layer II and Layer III.
Basically, the complexity of the encoder and decoder, the encoder/decoder delay, and
the coding efficiency increase when going from Layer I via Layer II to Layer III.

An MPEG audio stream consists of frames. A frame consist of a header and a
data block. The data block contains the actual audio data, while the header contains
information about the audio data. See figure 1.1 for an overview of the MPEG audio
frame structure. The fields in the header that are relevant in this thesis are sync, layer,
bit rate and frequency. The sync fields are 12 set bits in a row, and marks the beginning
of a frame. The layer, bit rate and frequency fields describes which MPEG audio layer
is used, the bit rate of the stream and the frequency of the audio data.

1.2.4 Java 3D

The Java 3D API4 specification is the result of a joint collaboration between Intel Cor-
poration, Silicon Graphics, Apple Computer and Sun Microsystems. The intended use
of the API is for writing three-dimensional graphics applications and applets.

Java 3D is not an authoring environment, and does not provide built-in authoring
tools. The goals of the Java 3D development has been high performance through op-
timizations and hardware support, rich set of 3D features, high-level, object-oriented
paradigm and support for a wide variety of file formats such as VRML by run-time
loaders (which are written in Java 3D).

4
<URL:http://www.javasoft.com/products/java-media/3D/>

3

Up to now Java 3D have been used mostly for 3D visualization. Sun has a vision
of Java 3D being used for all 3D applications, even for real time 3D games. It is not
clear if the performance of Java and Java 3D is good enough for this.

Some concepts not commonly considered part of the graphics environment such as
3D spatial sound is also part of the Java 3D API. It uses the Java sound engine API in
order to provide general sound and midi support.

1.3 Scalability

The definition of scalable is seemingly simple: to be able to scale. In other words: How
well a solution to some problem will work when the size of the problem increases. For
the kind of applications that we consider in this thesis, the problem size is the number
of clients. Depending on the application, a client can either be an actual user, or just a
program that is running.

There are two main aspects of scalability that has to be considered for distributed
interactive applications:

1. The scalability of the application itself.
The common mode of operation for interactive applications is to react on events
sent from other clients. The response time for the client time should be constant
with regards to the number of clients, i.e.O(1). Although memory is cheap these
days, the memory usage needs to be limited too. The memory requirements of
the applications should also beO(1), if possible.

2. The bandwidth requirements.
Although basic data distribution using IP multicast scales well to large groups,
there are still some issues that must be considered. One issue here is reliable
data distribution. Section 2.2.5 discusses this in more detail. Another issue is the
total bandwidth used, which should grow as little as possible when the number
of clients is increased. Preferably the bandwidth should be constant (O(1)), but
this is rarely possible.

It is not possible to give any firm rules when an application is scalable or not; this
has to be judged from case to case. For example, an application where the bandwidth
requirements are 10000+ 100� n = O(n), might be considered scalable although the
bandwidth grows linearly with the number of clients, since the growth is small com-
pared with total value of the bandwidth. Nevertheless, as a rule of thumb we can state
that the response time, memory requirements and the bandwidth requirements should
be constant, or grow with a small amount.

In this thesis, we are mainly concerned about the scalability of the applications
them self. The scalability of for example the underlying network technologies such as
the multicast routing protocols are only discussed when it have consequences for the
scalability of the applications.

1.4 Application Level Framing

The design principle of Application Level Framing (ALF) [1] was applied during the
design of these applications. The ALF principle states that an application should break
the data into suitable aggregates, and the lower levels should preserve these frame

4

boundaries. These aggregates are called Application Data Units, or ADUs. The funda-
mental characteristics of the definition of the ALF design principle is that it should be
possible to process each ADU as it arrives, even if the ADUs arrive out of order.

Although the original ALF paper does not mention multicast at all, Handley [6] has
shown that the ALF principle is important for designing scalable applications that uses
multicast. As an example, RTP was designed with multicast and ALF in mind.

In this thesis, packets and messages are used as ADUs.

1.5 The applications

The two different prototype applications might seem to be quite different, but they
share several features: both uses a simple text based protocol for messages, messages
are not cumulative, i.e. messages does not depend on earlier messages and a out of
order messages can be processed at arrival, and the chat function for example in both
application has been reused.

The main difference between the applications are that the scalability of mIR is
limited by bandwidth requirements, while the scalability of m3DE is limited by the
CPU usage and memory requirements of the client application. It is this difference that
is the reason for developing two applications in this thesis.

5

Chapter 2

mIR – multicast Interactive
Radio

2.1 Introduction

mIR – multicast Interactive Radio – is a suite of applications for transmitting MPEG
[4] audio files using IP multicast. mIR consists of three applications: the receiver, the
voting tool and the transmitter. The receiver uses an external MPEG player for actually
playing out the audio. The voting tool is the application that makes mIR interactive;
users can vote for songs, get more information about all the songs that are available or
engage in a discussion with the other users.

All applications are written in the platform independent language Java [8] and have
been tested with Sun Solaris, Linux, Windows 95 and Windows NT.

Two different “channels” are used for sending data, and each channel uses a dif-
ferent multicast address. On one channel (the audio channel) the actual audio data is
sent, on the other channel (the information channel) information about which songs are
available at the transmitter and messages to the discussion is sent. The voting tool sends
information on this channel too, while the receiver only listens to the audio channel and
does not send any information at all to any channel.

The focus when developing mIR has been on interactivity and scalability.
The mIR applications can be downloaded from the author’s home-page1.

2.2 The transmitter

The transmitter consists of two parts: one that receives votes from information channel,
and one part that transmit the MPEG files to the audio channel. The received votes are
stored in a hashtable, and these votes are used to select which song will be transmitted
next. All MPEG-1 [5] audio files (layer I,II and III) can be transmitted. The audio data
is multicasted using the RTP [13] protocol, using the payload type 14 for MPEG audio
[12], [7]. See figure 2.1 for an overview of the functionality of the transmitter.

There is currently no graphical user interface for the transmitter; it might be avail-
able in future versions.

1
<URL:http://www.cdt.luth.se/˜rolle/mIR/>

6

RTP-packetization
Synchronization and

MPEG Parsing

storage
Files inList of files

Array of filenames
Hashtable with votes

Selection of the
next song

Votes

mIR transmitter

RTP packetsVotes

Voters Receivers

External player

MPEG audio

URLs

Figure 2.1: mIR transmitter

7

Command Argument Notes

“m” The message A message to the discussion
“c” Clear all received votes (sent by the trans-

mitter at start of a new song)
“v” The song Vote for a song
“cv” Clear the vote from the user sending this

command
“q” Vote for “Quit transmitting this song”
“db” An URL to the database This URL is used in the voting tool to ac-

cess the database of songs
“fu” An URL to the filelist The URL to the list of available songs.

Table 2.1: Available commands

2.2.1 The voting protocol

A simple text based protocol is used for voting and the discussion (see section 2.4.3).
One or more commands can be sent in one RTP packet, separated by the newline char-
acter. All commands have the form “command:argument”. See table 2.1 for available
commands.

2.2.2 Filenames

The URL to a file that contains a list of the songs/files that should be available for
transmission are given at startup of the transmitter. The transmitter downloads the list
and checks all files if they are available for reading, and removes duplicate names. A
thread in the transmitter continuously sends the URL to the list of files to the informa-
tion channel using the “fu” command.

2.2.3 Transmission of songs

When the transmitter has selected which song will be transmitted next, the filename is
sent to a sender object that will read the file and send it to the multicast group. The
marker bit in the RTP header is set on the first packet of each song. The marker bit is
usually used for signaling talk-spurts when transmitting audio.

The transmission is done in a loop that consists of five steps, which will be per-
formed until the end of the file is encountered, enough “quit” votes has been registered
or an error occurs. The steps are:

1. Find next MPEG header.
An MPEG audio file/stream consists of MPEG frames. Each frame starts with a
header of four bytes, which begins with something called sync. This sync is 12
set bits in a row. The transmitter searches for the sync by reading one bit at a
time from the file. If no sync is found in 1024 bits the transmission of this file is
aborted.

2. Parse the MPEG header.
When the sync is found we read the remaining bits of the header and extracts the
available information (for example MPEG layer, bit rate, mono or stereo). If this
was the first header of a file, information about the song is sent to the information
channel using the “m” command.

8

3. Read the rest of the MPEG frame.
If the header parsing was successful the rest of the MPEG frame is read.

4. Send a RTP packet to the multicast group.
The complete MPEG frame is copied to a buffer, which is then put on the outgo-
ing queue.

5. Synchronize.
To ensure that the audio data is sent with the correct bit rate, the transmission is
synchronized before we read the next MPEG frame. After every tenth2 packet
the transmission is synchronized against the time the transmission of this file
started. The time the thread should sleep is calculated as

time= n � t f rame� (current time�start time)

wheren is the total number of packets sent during the transmission of this file
andt f rame is the duration of one frame. The other packets are sent with a slightly
shorter interval. The reason for this is that the granularity of the system clock in
Java is often as high as 10 milliseconds, and the valuet f rame is often at around 25
milliseconds, so to avoid time drifting we need to synchronize against the start
time once in a while.

After the last MPEG frame has been sent the hashtable with received votes (see
section 2.2.4) is cleared, and a “c” command is sent to the information channel (the
clients should now clear all data structures containing received votes). If an error have
occurred during one of the steps the transmission of the file is aborted. If the transmitter
have not been able to read at least 200 MPEG frames (200 frames usually represents
about 5 seconds of audio) before the error occurred the file is marked as corrupt. Cor-
rupt files will not be selected again.

2.2.4 Votes

The only commands the transmitter listen for is the “v”, “cv” and “q” commands.
When a vote is received (the “v” command) an identifier for the user voting is

retrieved. The RTCP [13] SDES CNAME is used for this purpose. The vote is inserted
into a hashtable of received votes, using the user identifier as the key and the song as
the data. This has a number of consequences:

1. Each user will only have one vote.

2. The running time of the operation isO(1) (i.e. the time needed is constant with
regards to the number of users and the number of available songs).

3. If two users vote for the same song, there will be two entries in the hashtable for
this song.

When a “cv” command is received, the identifier for this user is retrieved and if this
identifier is used as a key in the hashtable this entry is removed. Again, the running
time isO(1).

The “Quit transmitting this song now” (the “q” command) votes are also stored
in a hashtable, using the user identifier as the key. If the size of this hashtable be-
comes larger than half the number of listeners, the transmitter interrupts the current

2The default value is every tenth packet, but this can be changed at the startup of the transmitter.

9

transmission and selects a new song directly. The hashtable is cleared whenever the
transmission of a song starts.

The song that will be played next is selected among the songs the users have voted
for by randomly selecting one entry in the hashtable. The probability forsongi to be
selected is thus

Psongi =
votes f orsongi

∑ j2all songsvotes f orsongj

. This means that one have complete control over the selection of songs if there is only
one user (the probability is then 1 for the song the user have voted for), and if there is
many users and many votes there is still a chance that a song with only one vote will
be selected.

After a song is selected all the votes are reset to zero. If there is no votes at all a
song is selected at random.

2.2.5 Reliability of votes

To increase scalability, the received votes are the only state that the transmitter keeps.
The clients are responsible for acquiring this state from the traffic on the information
channel, and the transmitter does not send any information about this state to the chan-
nel.

Since neither IP multicast nor RTP provides reliable transmission, reliability must
be ensured in some other way. There exist a number of solutions to this problem:

1. Accept the packet loss.

2. Transmit redundant data, for example use Forward Error Correction (FEC) or
retransmit data.

3. Use Quality of Service (QoS) techniques and allocate/reserve enough bandwidth

4. Use a reliable multicast protocol.

Two of these solutions have been implemented in mIR: The use of a reliable multi-
cast protocol and the use of redundancy.

The SRRTP solution

SRRTP (the Scalable Reliable Real-time protocol)[10] is an extension to RTP that have
been developed at CDT, which implements the ideas in the SRM [3] framework. The
use of SRRTP does not just solve the problem with packet loss, but also creates new
ones:

1. Out of order packets.
The number of packets that arrive out of order increases when packet loss occurs.
Unless this is handled in some way, this can result in an inconsistent state at the
voters and the transmitter, for example if a user changes a vote quickly and the
two votes for different songs arrive out of order, the first received vote is the
correct and the second should be ignored.

2. Duplicate packets.
When a packet is lost and subsequently retransmitted, more than one copy of
the packet can arrive. For votes, this would not be any problem, but for the
discussion messages this would be rather annoying.

10

3. Late-comers.
When voters first start the voting tool, they need to get the current state, i.e. all
the votes.

4. Scalability.
There are still questions regarding the scalability of the different reliable multi-
cast protocols. If not even the underlying network protocols are scalable, is there
any reason for the application to be scalable then?

Following the ALF design principles (See section 1.4), the receiver can handle
each packet (i.e. ADU) as soon as it arrives, so the first problem was solved by simply
ignoring packets that arrive to late. Removing duplicate packets provides a solution
for the second problem. Since the global state is cleared after each song, the problem
with late-comers can be ignored. The only consequence of this choice is that it may
take longer for new clients to acquire the complete global state. Finally, since this
thesis is mainly about scalability issues in applications the problem with the scalability
of SRRTP has not been considered, although the protocol shows serious scalability
problems (See Section 2.5.4).

The redundancy solution

The problem of packet loss can also be solved by periodic retransmission, i.e. redun-
dancy.

In redundancy version of mIR, the votes are periodically retransmitted from the
voters. The time between the retransmissions is calculated as

tsleep=
n
k

wheren is the total number of members in the information channel andk is a constant
(currentlyk= 2).

This means that the votes become more unreliable as the number of users increases.
This might be acceptable, since these votes really are “unreliable” anyhow (a vote only
guarantee that there is a chance that the song will be selected). The real consequence
is that the probability that a song a user has voted for will be selected is lower than the
probability calculated in Section 2.2.4, due to the fact that the probability that the vote
get lost also has to be accounted for.

To avoid synchronization of votes (i.e. if two voters both vote at timet, they
shouldn’t both retransmit their votes att + tsleepsince this would create a higher load
on the network and on the transmitter), a short random time is added totsleep. The dis-
cussion messages are not currently retransmitted, so the discussion must be considered
as unreliable.

2.2.6 Reliability of the audio transmission

A harder problem with packet loss to solve is the problem with audio quality. MPEG-1
audio was not designed for network links with data loss, and the audio quality decreases
rapidly when packets are lost. A packet loss of 1 % makes for example music encoded
at 128 kbit/s almost impossible to listen to. The consequence is that a solution for the
problem with packet loss ismoreimportant to solve for the audio transmission, since
the whole system becomes impossible to use even for low ratios of packet loss.

None of these solutions described above, except the first, are trivial. Initial experi-
ments with the use of the SRRTP protocol for the audio distribution have started.

11

Figure 2.2: The receiver

2.3 The receiver

The receiver can receive any MPEG audio stream that the transmitter can send, but not
all RTP MPEG audio streams. The receiver fails if:

� There is more than one MPEG frame in each RTP packet.

� The MPEG frames are fragmented.

MPEG audio frames usually are smaller than 500 bytes, which means that there seldom
is any need for fragmentation of frames since this is smaller than the usual MTU3 on
the internet today. Support for multiple MPEG frames in each RTP packet is planned
for future versions of mIR; this would reduce the bandwidth of the audio transmission
since there would be less overhead due to packet headers for each MPEG frame.

The data is sent to the player either by writing to standard input of the player pro-
cess, or over an HTTP stream. Because most MPEG audio players can not handle
changes in bit rate or MPEG layer in a stream, the player process is restarted when
the transmission of a new song starts, i.e. when a packet where the marker bit is set is
received. For users running mIR with an external player that uses a GUI, this might be
an annoyance.

2.3.1 Receiving packets

When a RTP packet is received, the sequence number is checked to detect packet loss.
If packet loss has occurred the count of number of packets received is adjusted so the
synchronization step will carried out correctly. The MPEG frame is then retrieved from
the packet, and the packet is placed in the play-out buffer. Information about the audio
stream is retrieved from the MPEG frame, and the current bit rate and the MPEG layer
is displayed in the user interface (see figure 2.2).

A player thread in the receiver writes the MPEG frames from the packets in the
play-out buffer to an output stream. This stream is either the standard input of an
external player process, or the output stream of a TCP socket. The receiver listens for
HTTP connections on this socket.

After each frame has been written to the output stream the player thread is synchro-
nized in a similar fashion as the synchronization of the transmission in the transmitter.

3MTU: Maximum Transmission Unit, the size of the largest packet that can be sent without fragmenta-
tion.

12

Figure 2.3: The voting tool

2.3.2 Performance

The receiver has been tested on a PC with a Pentium 90 MHz processor4 with adequate
results, although this highly dependent of the external player that is used. The total
bandwidth required for the receiver is about 10% more than the bandwidth of the trans-
mitted song. For MPEG 1 layer III songs encoded at 128 kbit/s the used bandwidth5 is
142 kbit/s and for songs encoded at 112 kbit/s the used bandwidth is 125 kbit/s. A 128
kbit/s ISDN connection is thus enough for receiving and playing songs encoded at 112
kbit/s with full quality6.

2.4 The voting tool

The voting tool is the application that makes mIR interactive. A user can see all avail-
able songs, vote for songs, communicate with other listeners and get more information
about the songs. There are two different kinds of votes: votes for a specific song and
“quit” votes. When the transmitter has received enough quit votes, the transmission of
the currents song is interrupted and a new song is selected.

The voting tool listens for commands on the information channel and sends votes
and messages from the user to the discussion to the channel (see figure 2.3).

2.4.1 Available songs

When an URL is received via the ”fu” command for the first time, the filelist is down-
loaded, and the filenames is inserted into a hashtable (using the filename as the key). A
tree structure of the filenames is then created. The user can vote for songs by selecting
them in this tree structure (see figure 2.4). All votes received from other users are also
available for viewing.

2.4.2 Information about songs

Information about all the available songs are kept in a SQL[9] database7. Currently
the database contains information such as bit rate and song length. It is possible to add
comments about the songs and to search the database. The function “Information about
a song” in the voting tool opens a web browser with a web interface to the database,
and automatically views the correct entry.

4Tested with both Windows 95 and Linux.
5Measured using IP firewall rules/accounting on a Linux workstation.
6This has been tested good results. All other applications that uses bandwidth must of course be closed.
7MySQL,<URL:http://www.mysql.com>

13

Figure 2.4: Voting

14

Figure 2.5: The discussion tool

2.4.3 Discussion

A simple discussion tool is included in the voting tool. Information about the current
song is sent to the discussion by the transmitter. See figure 2.5 for an example view of
the discussion. The messages to the discussion are not retransmitted, so some messages
might not reach all other users due to packet loss.

2.5 Scalability

Both the transmitter and the voters perform operations based on commands sent to the
information channel. The commands are sent by both the transmitter and the voters.
These operations have to be executed quickly as incoming packets with commands may
be lost otherwise. Preferably these operations should also scale well, i.e. the running
time of the operations should beO(1) with regards to the number of users (the time to
perform an operation is constant and independent of the number of users). The memory
requirements of the application should also be bounded.

2.5.1 The transmitter

As shown in section 2.2.4, the running time of all operations performed by the transmit-
ter when commands are received from the voters isO(1). The memory requirements
is not constant, but grows linearly (O(n)) with the number of active voters (i.e. voters
that actually votes). For each user voting about 100-200 additional bytes will be stored
in the hashtable containing votes, so even if 10000 users are voting this amounts to
1-2 Mbytes, which is acceptable when one consider that the transmitter process usually
uses 5-6 Mbytes of memory anyway. The hashtable is cleared after each song has been
sent.

Although all operations can be performed in constant time, there might still be a
scalability problem if all voters happen to send votes at exactly the same time. The
effect to the transmitter of this is a higher rate of packet loss, but if the voters are not

15

completely synchronized (i.e. the next retransmission of votes do not also happen at
exactly the same time) the retransmission of votes will assure that all votes are received.

2.5.2 The voting tool and the receiver

The voting tool uses the same algorithms for storing votes as the transmitter, and is
therefore as scalable as the receiver is. The receiver just receives a stream of audio
data with constant bit rate and sends it to an external player, so it is as scalable as
RTP/RTCP.

2.5.3 Bandwidth

The SRRTP version

The total bandwidth used by mIR can be calculated as:

B= Baudio+Bdiscussion+Bvotes

whereBaudio, BdiscussionandBvotesis the bandwidth for the transmission of the audio
data, discussion and votes respectively. The value ofBaudio is constant for a fixed bit
rate. The use of SRRTP makesBdiscussionandBvoteshard to calculate, butBdiscussionis
usually low.Bvotescan estimated as

Bvotes=
v �S
tsong

+BSRRTP

wherev is the total number of votes transmitted,S is the average size of one vote,tsong

is the length of the transmitted song, andBSRRTPis the overhead for SRRTP, which
depends on the packet loss and the number of receivers/senders.

The redundancy version

Again, the total bandwidth used by mIR can be calculated as:

B= Baudio+Bdiscussion+Bvotes

whereBaudio, BdiscussionandBvotesis the bandwidth for the transmission of the audio
data, discussion and votes respectively. The value ofBaudio is constant for a fixed.
Bdiscussionis not constant, but usually quite low.

To calculate an estimate ofBvotes, the maximum number of votes sent during the
transmission of one song is calculated, andBvotesis then calculated as

Bvotes=
v �S
tsong

wherev is the number of votes sent,S is the average size of one vote andtsong is the
length of the transmitted song. Unfortunately,v is only limited by how often users
change their votes:

v� m� (
tsong

min(tsleep; tsong)
+C)

16

whereC is the number of times one user changes the vote on average,m is the number
of users voting,tsong is the length of the current song andtsleepis as in Section 2.2.5):

tsleep=
n
k

If we only consider the case were users votes once per song (C= 0), then

v� m�
tsong

min(tsleep; tsong)

If tsleep� tsong, then

v� m�
tsong

tsleep
= m�

tsong

(n=k)
=

m
n
�k � tsong� k � tsong

, sincem� n. The conditiontsleep� tsong can also be written asn� k � tsong. When
these conditions hold, i.e. users don’t change their votes and the total number of users
is less thank � tsong, then

Bvotes�
k � tsong�S

tsong
= k �S

i.e. the bandwidth is always smaller than a constant value. In the general case,

Bvotes� m� (
tsong

min(tsleep; tsong)
+C) �

S
tsong

If the value ofC can be considered constant, thenBvotesgrows linearly when the number
of users voting increases.

2.5.4 Measurements

Instead of trying to analyze the behavior of periodic retransmission and SRRTP with
different degrees of packet loss, practical experiments have been conducted. For mea-
suring the used bandwidth a PC was configured as a firewall8, which reported the actual
value of bits/s transferred to and from a multicast address.

Table 2.2 shows the measured bandwidth. The values are the average value over 1
minute. The users were simulated with a “ghost client” application. The ghost client
operate in a simple loop:

1. Send one vote and one message to the discussion.

2. Sleep for a random time. The distribution is a uniform distribution of[0::10]
seconds.

3. Go back to 1.

We can clearly see that the SRRTP solution is not scalable: the bandwidth increases
rapidly even without packet loss when the number of users increases. The redundancy
solution on the other hand behaves as predicted: it shows a small and linear growth
when the number of users increases.

8Running the Linux operating system,<URL:http://www.Linux.org>

17

Users Unreliable SRRTP: 0% SRRTP: 5% SRRTP: 10%

1 1.8 1.8 1.8 1.9
10 6.1 6.2 6.5 7.2
25 13 25 32 44
50 25 105 126 136

Table 2.2: Bandwidth measurements. Values for SRRTP are packet loss in percent, for
bandwidth the values are in kbit/s.

2.6 Conclusion

mIR provides a scalable system for distributing high quality audio over the internet
with interactivity. Although the applications still must be considered to be prototypes,
they are very robust. The transmitter for instance, has been running for over three
months without any failures. Implementing the applications in Java has had a number
of advantages, for example the applications are robust and platform independent and
the development have been fast.

By following the ALF design principles, each incoming packet to the different
application can be handled directly. Combined with efficient constant-time algorithms
make the applications scalable.

Although the bandwidth is not limited, the growth is small for each additional user.
The main uncertainty is the use of SRRTP, which has not yet been proven to be scalable.
Another solution, the use of redundancy has though been shown to be scalable.

2.7 Future work

The main area of future work is reliability: how to provide reliability for scalable ap-
plications that uses multicast. The SRRTP protocol is not really scalable, and solutions
such as redundancy are not fool-proof: we can not guarantee that all packets arrive. For
applications that demand truly reliable traffic, another solution is needed.

One other interesting idea for future work is to transmit layered MPEG audio. The
idea is to divide the audio data into two or more layers at the transmitter. The layers can
be incrementally combined to produce higher quality audio at the receiver. Each layer
would be transmitted on a different multicast group, and a receiver joins an appropriate
subset of the multicast groups to receive the audio. A user could then listen to the audio
at a lower quality even if it can’t receive 125-145 kbit/s, which is needed now.

Most of the following ideas are planned for future versions of mIR.

� The transmitter

– Reduce the bandwidth for audio sent by sending more than one MPEG
frame in each RTP packet.
This could reduce the bandwidth used by about 5-6 kbit/s.

– A graphical user interface.

– Statistics.
The statistics could for example be inserted into the database.

– Some sort of long term memory of votes.
When there are no votes, a song is selected at random. Songs that have

18

received many votes in the past could perhaps have a higher probability of
being selected again.

– Congestion control.
Since mIR uses quite much bandwidth, some sort of congestion control
would be appropriate (in the transmitter, the receiver or in both the trans-
mitter and receiver).

� The receiver

– Run-time configuration of the external player.
This would make it easier to use other players than the default ones.

– An Applet version.

� The voting tool

– Repeatable votes
This could be an option such as “vote for this song until it is selected”.

– An Applet version.

19

Chapter 3

The multicast 3D environment

m3DE – multicast 3D Environment – is a distributed multiuser 3D environment. Users
(represented by Avatars in the virtual world) can move around in a three dimensional
world. The locations of the avatars are transmitted along with other information to the
other users using IP multicast. Users can also insert VRML objects into the world, and
discuss with other users with the chat-boards.

The application is written in the platform independent programming language Java,
and uses the Java 3D API for rendering the 3D environment. The focus has not been to
create an advanced 3D environment, but to study some issues of scalability in applica-
tions for distributed 3D virtual worlds.

3.1 m3DE

The original idea was to use the new MPEG-4 standard, but due to a lack of MPEG-4
tools this idea had to be abandoned.

A first implementation of m3DE was done using a combination of Java applications
and applets, a VRML viewer and the VRML External Authoring Interface1 instead.
This solution was abandoned due to performance problems. Eventually Java 3D was
selected as the 3D technology instead, which provided better performance and better
control.

A simple text protocol is used for sending commands among the clients. All com-
mands are transmitted to the other clients by IP multicast. For a summary of the differ-
ent commands, see table 3.1.

Multiple message boards (“chat-boards”) can exist in the world. Messages to these
chat-boards are sent using the “msg” command, which specifies which chat-board the
message should be posted to.

The clients send their position each time the avatar moves with the “pos” command.
Additional “pos” command are sent every 5:th second, to assure that new clients receive
the position of the other avatars even if they do not move.

The ALF principle is used again: each packet is independent from each other and
self-contained, and can be processed at arrival if packets arrive out of order. The pro-
cessing of incoming packets is fast, and all algorithms areO(1). In the typical case,
all work that is needed when a packet arrives is to look up the user in a hashtable and
change the state of the user object.

1
<URL:http://www.vrml.org/WorkingGroups/vrml-eai/>

20

Command Format Note

“msg” msg:chatboard:message A message to a chat-board from a
client

“pos” pos:x:y:angle The current position of this client
“vrml” vrml:scale:x:y:z:ax:ay:az:URL An URL to a VRML object and co-

ordinates and a rotation in the world
“died” died: This client has closed the applica-

tion

Table 3.1: Commands

Figure 3.1: An avatar. The image is captured in real time from a camera next to the
user’s computer.

The inner workings of m3DE are simple and mostly event driven. A global state
exist, which contains information about all avatars such as their position and the name
of the user. When an event from the GUI arrives the current state for the user is updated,
and if the event was a movement the change is transmitted to the other clients. Events
from the network layer is handled in an even simpler way: the state is updated with
the new information. For example, when a change in position for an avatar has been
received, the position of the 3D object representing the avatar is replaced with the new
position. The graphics drawing is automatically handled by Java 3D.

3.1.1 The avatars

The avatars can navigate in the world in 2 dimensions and can rotate around a vertical
axis going through the center of the avatar. To be able to tell who is who, the front of
the avatars consists of an image. This image is downloaded using an URL to the client
application, and then distributed to the other clients over the multicast channel. The
URL is given at the startup of the client. This can combined with a web-cam such as
WebCam322, and it is thus possible to incorporate a low frame-rate live video stream
of each user on their avatar.

The name of user is also shown above the avatar. See figure 3.1 for an example of
an avatar.

2
<URL:http://www.kolban.com/webcam32/>

21

Figure 3.2: The main window. Viewed from the overview.

22

Figure 3.3: The main window. Viewed from the center of the avatar.

23

3.1.2 Views

A user can view the world from two different viewpoints: an overview of the com-
plete world or from the center of the user’s avatar. When viewing the world from the
overview the user can rotate the world in any direction. It is also possible to change
the zoom factor. From the avatar viewpoint it is possible to change the direction of the
viewpoint. Examples of the two different views can bee seen in figure 3.2 and 3.3.

3.1.3 VRML objects

Users can insert VRML objects into the world. A URL to a VRML file is given, and
the user then places the object in the world. The URL and the position of the object is
then transmitted to the other clients using the “vrml” command. The other clients then
download the VRML file and add the object to the world. Currently there is no support
for telling clients that just entered the world about VRML objects that were inserted
into the world earlier.

3.1.4 Actions

Certain objects have actions associated with them, such as the avatars and the chat-
board. When clicking on an avatar, a dialog box with some information about that user
is shown. The chat-board opens a simple chat tool. It is possible to have actions that
perform arbitrary Java instructions. For instance, inside one of the houses in the current
world there is an object that can start and stop the mIR application.

3.1.5 The ghost client

To allow for easy testing and debugging of the application, a ghost client were devel-
oped. This application simulates an arbitrary number of users. The “ghosts” moves
randomly around in the world with one move every two seconds, and sends messages
to the different chat-boards 3-4 times per minute.

3.2 Scalability

3.2.1 The application

The performance of the actual 3D display depends on the performance of the Java 3D
implementation. With a modern, fast PC and a graphics card that support the OpenGL
standard, the Java 3D performance is very good.

It is not the total number of objects and avatars in the world that limit the speed
of the application, but the number of objects that is currently visible and moving. A
complex world might actually provide better performance, since the number of visible
and moving objects might be smaller (i.e. many objects are obscured by larger static
objects in the world).

The memory requirements for the 3D environment currently quite high. For each
avatar, 0.5-1 more Mbytes of memory is needed for m3DE. This makes the memory
requirements the limiting factor of the scalability of m3DE. The speed of m3DE on a
fast PC is still acceptable when the memory usage become intolerable3.

3This level is reached for about 30-35 users.

24

3.2.2 Bandwidth

Each client sends the position of the avatar each time the avatar moves, plus once every
5:th second to make sure late-comers receives the other avatars’ coordinates sometime
even if they do not move. If an avatar moves in average once per second, then the
bandwidth used for position reporting is about 1 kbit/s per avatar.

The continuously updated images use most of the bandwidth requirements of m3DE.
The actual bandwidth depends on the image size and the update frequency. It is advis-
able to reduce the update frequency when the number of users increases.

If the application can be made scalable enough to make the bandwidth the limiting
factor, there are some possible optimizations. One approach would be to some sort of
“layered encoding”: the world is divided into areas, and position reports for each part
are sent on a different multicast channel. A client will then listen to only the appropriate
channels: one for global announcements and the channel for the area where the clients
is currently located. Since the images are currently transmitted uncompressed, much
could be gained by some compression methods.

Currently the VRML files used when inserting VRML objects in the world are
downloaded from a HTTP server, but for the HTTP servers in use today this is not
a problem for the number of users the application itself can handle. A completely
multicast based solution such as the solution for the images would be preferable, and
is planned for future versions.

3.3 Conclusions

Again, the use of the ALF design principle gives a good framework for a scalable
application. Unfortunately, m3DE cannot be called scalable; the memory requirements
limit the scalability too much. Still, the application is usable for up to 30-35 users,
which is rather good for a “virtual world” type of application.

A not so surprising conclusion is that the scalability of m3DE, in contrast to mIR,
is limited by the application itself and not the bandwidth requirements.

3.4 Future work

The are two areas of future work:

1. More work regarding the study of scalability issues with these kinds of applica-
tions, and

2. Future work with the prototype application.

3.4.1 Scalability

The main area for future work is of course to try to limit the memory usage. It is
not clear what actually can be done, since displaying 3D graphics is processing and
memory intensive. A solution might be to try to limit the number of avatars in any
given view of the world, without limiting the total number of avatars in the world.

25

3.4.2 The application

For the application itself, the amount of work that could be done is practically unlim-
ited. These are some of the more interesting ideas:

� Make the application completely distributed, i.e. remove the use of HTTP servers
for distributing VRML objects.

� Persistence: Changes made to the world should not disappear if all users quit the
client applications.

� Implement collision detection so the avatars can’t move through objects and
walls.

� More advanced avatars: arbitrary VRML objects instead of the predefined model,
emotions such as happy, sad, waving etc.

� Movement in three dimensions.

� 3D Audio.

26

Chapter 4

Conclusions

There are clear differences in the scalability of mIR and m3DE. For mIR, the main
concern for scalability is the bandwidth requirements, which can be solved by not using
reliable multicast and providing reliability with redundancy instead. For m3DE it is the
memory usage and the performance of the 3D display that are limiting the scalability.

The ALF principle has shown to be an important help when designing interactive
applications that uses multicast (or any network protocol for that matter). ALF is not
enough, the algorithms for processing incoming packets has to be efficient and scalable
too.

Further work is necessary in the area of reliability for applications that uses multi-
cast and need to be scalable. Much research is currently being conducted in this area.
For the applications, much future work can be done, especially for m3DE. One area
that has been avoided in this thesis is the question of usability of 3D applications.

The goals have been fulfilled: some problems of scalability for interactive applica-
tions have been identified, and some of them have been solved. Most of the original
ideas for mIR have been implemented, and a basic 3D interactive environment have
also been implemented.

27

Appendix A

Glossary

ADU Application Data Unit

ALF Application Layer Framing

API Application Programming Interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

mIR multicast Interactive Radio

m3DE multicast 3D Environment

MPEG Motion Picture Expert Group

RTCP RTP Control Protocol

RTP Real Time Protocol

SSRC Synchronisation Source

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

VR Virtual Reality

VRML Virtual Reality Markup Language

28

Bibliography

[1] D. Clark and D. Tennenhouse. Architectural Considerations for a New Generation
of Protocols. InProceedings of SigComm, pages 201–208, 1990.

[2] S. Deering.Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford
University, 1991.

[3] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. A reliable multi-
cast framework for light-weight sessions and application framing. InACM SIG-
COMM, 1995.

[4] MPEG Group.<URL:http://cselt.stet.it/mpeg/>.

[5] MPEG Group. ISO/IEC International Standard 11172; coding of moving pic-
tures and associated audio for digital storage media up to about 1,5 mbit/s, 1993.
<URL:http://cselt.stet.it/mpeg/>.

[6] M. Handley. On Scalable Internet Multimedia Conferencing Systems, 1997.

[7] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar. RTP payload format for
MPEG1/MPEG2 video, 1998. IETF RFC2250.

[8] JavaSoft Inc. The Java Language.<URL:http://www.javasoft.com/>.

[9] ISO/IEC 9075:1992. Information technology – Database languages – SQL, 1992.

[10] P. Parnes. Scalable Reliable Real-time Transport Protocol - SRRTP. Work in
progress1, 1996.

[11] J. Postel. User Datagram Protocol, 1980. IETF RFC768.

[12] H. Schulzrinne. RTP profile for audio and video conferences with minimal con-
trol, 1996. IETF RFC1890.

[13] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport pro-
tocol for real-time applications, 1996. IETF RFC1889.

1
<URL:http://www.cdt.luth.se/˜peppar/docs/rtp_srm/>

29

